1 The Basics 8
1.1 Expanding and Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Exponents and Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Coordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 The Unit Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Chapter Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Dierential Calculus 33
2.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Derivatives from First Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Derivatives of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Derivatives of Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Product and Quotient Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Implicit Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 The First Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.9 The Second Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.10 Applications of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.11 Chapter Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Integral Calculus 58
3.1 Integrals as Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Integration Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Area and the Denite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 U-Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Volume by Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Applications of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Chapter Revision and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Vectors and Matrices 72
4.1 Basic Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Vector Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Basic Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Determinants and Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Cramer's Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.8 Chapter Revision and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 Probability and Statistics 98
5.1 Factorial and Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Ordering and Choosing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Basic Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Miscellaneous Other Topics 106
6.1 Roots of Quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Pascal's Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6 Interest and Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A The Greek Alphabet 124
B Notation 125
C Exercise Hints and Solutions 127
D Brief Health Matters 133
1.1 Expanding and Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Exponents and Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Coordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 The Unit Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Chapter Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Dierential Calculus 33
2.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Derivatives from First Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Derivatives of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Derivatives of Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Product and Quotient Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Implicit Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 The First Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.9 The Second Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.10 Applications of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.11 Chapter Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Integral Calculus 58
3.1 Integrals as Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Integration Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Area and the Denite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 U-Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Volume by Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Applications of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Chapter Revision and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Vectors and Matrices 72
4.1 Basic Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Vector Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Basic Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Determinants and Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Cramer's Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.8 Chapter Revision and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 Probability and Statistics 98
5.1 Factorial and Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Ordering and Choosing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Basic Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Miscellaneous Other Topics 106
6.1 Roots of Quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Pascal's Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6 Interest and Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A The Greek Alphabet 124
B Notation 125
C Exercise Hints and Solutions 127
D Brief Health Matters 133